Beyond Homophily: Structure-aware Path Aggregation Graph Neural Network

Yifei Sun¹, Haoran Deng¹, Yang Yang^{1*}, Chunping Wang², Jiarong Xu³, Renhong Huang¹, Linfeng Cao¹, Yang Wang² and Lei Chen²

¹College of Computer Science and Technology, Zhejiang University

²Finvolution Group

³Department of Information Management and Business Intelligence, Fudan University {yifeisun, denghaoran, yangya, renh2}@zju.edu.cn, jiarongxu@fudan.edu.cn,

{wangchunping02, wangyang09, chenlei04}@xinye.com, linfengcao1996@gmail.com

IJCAI 2022 Code:None

2022. 09. 07 • ChongQing

Introduction

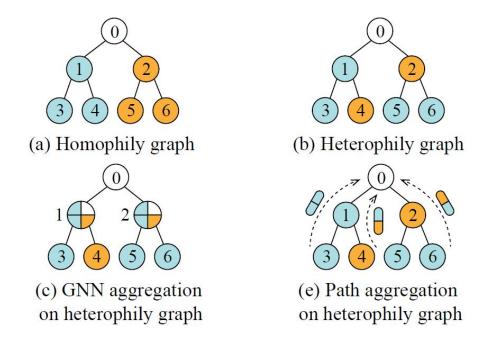


Figure 1: (a) & (b) show patterns of homophily and heterophily graphs. (c) demonstrates the GNN aggregation process for node 0 of (b). (d) our proposed path aggregation compared with (c).

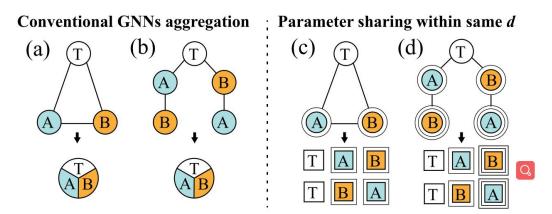


Figure 3: Intuitive case where GNNs are not able to distinguish the target nodes in (a) & (b), while our path-based aggregation with parameter sharing mechanism can capture the topological information and make the embedding distinguishable (c) & (d). (Nodes with similar characteristic represented as the same notation.)

Method

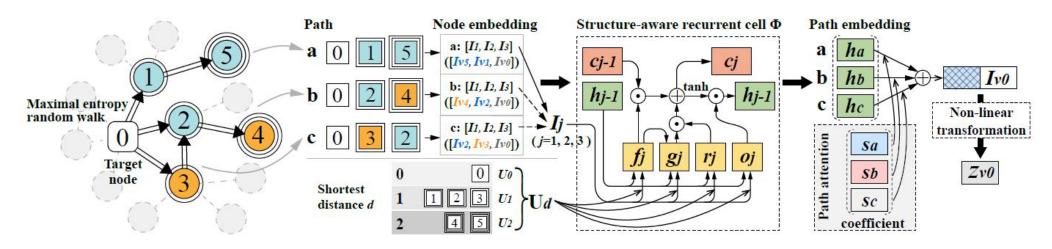


Figure 2: The workflow of PathNet for node classification of node 0 with the walk length k=3. The color of node stands for label and the number stands for node index.

Method

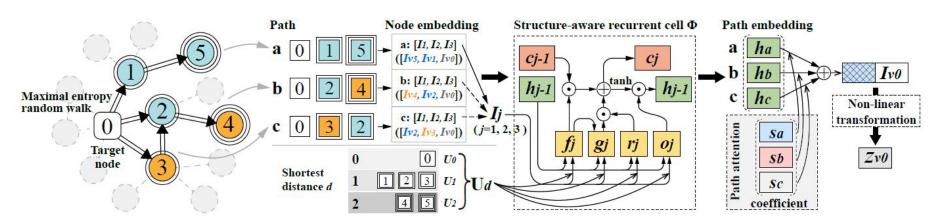


Figure 2: The workflow of PathNet for node classification of node 0 with the walk length k=3. The color of node stands for label and the number stands for node index.

$$\eta = -\sum_{i} \pi_i \sum_{j} p_{ij} \ln p_{ij}. \tag{1}$$

$$\mathbf{P}_u = \frac{\mathbf{D}_u^{-1} \mathbf{A} \mathbf{D}_u}{\lambda},\tag{2}$$

Method

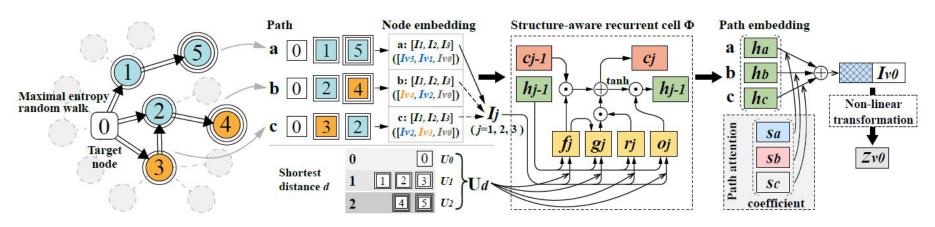


Figure 2: The workflow of PathNet for node classification of node 0 with the walk length k=3. The color of node stands for label and the number stands for node index.

$$\mathbf{I} = \sigma \left(\mathbf{W_{in}} \mathbf{X} + \mathbf{b_{in}} \right), \qquad (3) \qquad \mathbf{s}_{v,p} = \text{SOFTMAX} \left(\delta \left(\mathbf{a} \left(\mathbf{I}_{v} \| \mathbf{h}_{p} \right) \right) \right), \qquad (5)$$

$$\mathbf{r}_{j} = \sigma \left(\mathbf{W_{r}} \cdot h_{j-1} + \mathbf{U_{d}} \cdot \mathbf{I}_{j} \right), \qquad \mathbf{r}_{j} = \sigma \left(\mathbf{W_{o}} \cdot h_{j-1} + \mathbf{U_{d}} \cdot \mathbf{I}_{j} \right), \qquad \mathbf{r}_{j} = \sigma \left(\mathbf{W_{o}} \cdot h_{j-1} + \mathbf{U_{d}} \cdot \mathbf{I}_{j} \right), \qquad \mathbf{r}_{j} = \tanh \left(\mathbf{W_{g}} \cdot h_{j-1} + \mathbf{U_{d}} \cdot \mathbf{I}_{j} \right), \qquad \mathbf{r}_{j} = \mathbf{f}_{j} \odot \mathbf{c}_{j-1} + \mathbf{r}_{j} \odot \mathbf{g}_{j}, \qquad \mathbf{h}_{j} = \mathbf{o}_{t} \odot \tanh \left(\mathbf{c}_{j} \right), \qquad (4)$$

Experiments

2		Cora	Pubmed	Citeseer	Cornell	NBA	BGP	Electronics
#Hom. ratio		0.81	0.80	0.74	0.30	0.39	0.37	0.25
Baselines	MLP	74.75 ± 2.22	86.65 ± 0.35	72.41 ± 2.18	81.08 ± 6.37	59.21 ± 6.92	63.39 ± 0.34	75.03 ± 0.08
	GIN	84.97 ± 1.51	86.97 ± 0.53	72.19 ± 1.74	58.10±5.70	65.47 ± 6.85	OOM	OOM
	GAT	82.68 ± 1.80	84.68 ± 0.44	75.46 ± 1.72	58.92 ± 3.32	67.19 ± 1.04	62.25 ± 0.90	64.64 ± 0.27
	GraphSage	86.90 ± 1.04	88.45 ± 0.50	76.04 ± 1.30	75.95 ± 5.01	61.70 ± 2.40	61.71 ± 0.85	74.92 ± 0.19
	MixHop	85.41 ± 1.61	86.38 ± 0.46	75.43 ± 1.89	72.51 ± 6.36	68.89 ± 5.95	64.80 ± 0.83	67.84 ± 0.50
	H2GCN	86.21 ± 0.98	87.86 ± 0.19	76.73 ± 1.48	81.27 ± 4.63	66.67 ± 7.02	65.13 ± 1.01	73.92 ± 0.52
	GPRGNN	86.00 ± 2.46	86.56 ± 0.29	78.45 ± 0.27	50.82 ± 3.28	48.25 ± 4.97	61.49 ± 0.40	75.79 ± 0.16
	FAGCN	86.30 ± 1.74	88.50 ± 0.27	76.20 ± 1.45	72.70 ± 4.50	63.49 ± 3.89	64.48 ± 0.55	71.10 ± 2.02
	P-GNN	68.05 ± 1.30	84.97 ± 0.38	64.81 ± 1.29	58.65 ± 3.21	58.41 ± 7.40	54.04 ± 3.81	57.25 ± 2.78
	GeniePath	85.15 ± 0.65	86.50 ± 0.34	76.46 ± 1.42	59.19 ± 4.43	68.73 ± 5.41	63.15 ± 2.94	73.39 ± 0.35
	SPAGAN	86.12 ± 0.54	85.10 ± 0.19	77.41 ± 0.82	55.41 ± 2.18	53.65 ± 7.23	52.59 ± 0.67	53.93 ± 5.08
Ablation	PathNet-MLP	82.89±2.84	87.86±0.07	75.78 ± 1.50	90.54±1.35	69.05±6.08	64.36±0.54	75.81±0.58
	PathNet-GRU	84.76 ± 1.52	87.89 ± 0.12	76.57 ± 1.08	90.74 ± 1.81	69.52 ± 7.16	64.46 ± 0.76	76.16 ± 0.52
	PathNet-LSTM	84.39 ± 2.77	87.89 ± 0.14	76.44 ± 2.86	91.35 ± 1.62	69.37 ± 6.27	65.19 ± 0.79	76.12 ± 0.39
	RW-PathNet	85.08 ± 1.17	87.84 ± 0.34	78.54 ± 2.13	90.27 ± 2.16	71.27 ± 5.65	64.92 ± 0.61	76.31 ± 0.45
	PathNet-Mean	83.46 ± 2.36	88.18 ± 3.94	76.59 ± 1.61	91.08 ± 2.43	70.16 ± 6.18	64.81 ± 0.77	76.85 ± 0.55
7	PathNet-Sum	84.21 ± 1.43	86.93 ± 0.27	74.80 ± 2.44	89.19 ± 2.70	67.70 ± 6.44	65.39 ± 0.83	75.06 ± 0.44
	PathNet	85.76±2.67	88.92±0.21	77.98 ± 2.40	91.35±2.91	71.69±4.83	65.72±0.66	76.97 ± 0.84

Table 1: Mean accuracy and standard deviation of PathNet on node classification compared with baselines and ablation study.

Experiments

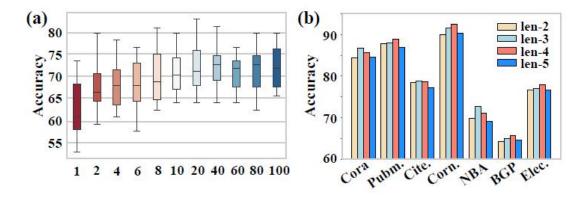


Figure 4: Model variants of different number (a) and length (b) of sampled paths.

	Syn-Cora	Syn-Citeseer
#Hom. ratio $\mathcal{H}_{\mathcal{G}}$	0.37	0.39
GIN	51.40±1.55	59.09 ± 2.71
GAT	36.96 ± 1.60	47.44 ± 1.76
GPRGNN	43.62 ± 1.69	53.95 ± 1.87
PathNet	57.59±1.54	71.42 ± 1.15

Table 2: Node classification on synthetic datasets.

Thanks